Enzymatic Synthesis of a CCK-8 Tripeptide Derivative

Li GUO¹*, Zi Min LU², Heiner ECKSTEIN³

¹West China School of Pharmacy, Sichuan University, Chengdu 610041 ²Tongji Medical College, Huazhong Science & Technology University, Wuhan 430030 ³Institute of Organic Chemistry, University of Tuebingen, 72076 Tuebingen, Germany

Abstract: The enzymatic synthesis of CCK-8 tripeptide derivative Phac-Met-Asp(OMe)-Phe-NH₂ is reported. Starting with Phac-Met-OCam, we have successfully synthesized the target tripeptide with three free or immobilized enzymes, α -chymotrypsin, papain and thermolysin in reasonable yields. The key steps in this synthesis were the coupling of Phac-Met-OCam and H-Asp(OMe)₂ to form Met-Asp peptide bond catalyzed by α -chymotrypsin and the selective hydrolysis of α -ester of Phac-Met-Asp(OMe)₂ catalyzed by papain.

Keywords: Enzymatic synthesis, CCK-8, tripeptide derivative.

Enzymes have proved to be an attractive alternative method to the peptide synthesis^{1,2}. We are interested in enzymatic synthesis of biological active peptides, such as Phac-Met -Asp(OMe)-Phe-NH₂, which corresponds to a fragment of cholecystokinin³ C-terminal octapeptide CCK-8[Asp-Try(SO₃)-Met-Gly-Trp-*Met-Asp-Phe-NH*₂]. The phenylacetyl (Phac) group, which can be cleaved with penicillin G amidase without effecting the peptide bonds⁴. So it was used to protect the amino group of methionine. The aim of this investigation is to demonstrate the possibility of synthesis of this peptide by enzymatic methods.

We have provided a successful enzymatic synthesis of the target tripeptide derivative with three free enzymes(α -chymotrypsin, papain and thermolysin) in reasonable yields as shown in **Figure 1**. The key steps in this synthesis were the formation of Met-Asp peptide bond and the selective hydrolysis of α -ester of **1**. Usually, it is not easy to form peptide bond between Met and Asp catalyzed by enzymes⁵. We carried out this key reaction through the coupling of Phac-Met-OCam(Cam, carboxamidomethyl) and H-Asp(OMe)₂ in the presence of α -chymotrypsin to form **1** in more than 63% yield. The reaction proceeded in ethyl acetate containing 0.05 mol/L Tris-HCl buffer (1.5%, v/v, pH 9.0). It should be noted that no product **1** could be obtained when the reaction carried out in dry ethyl acetate or acetonitrile with the same enzyme. **2** was obtained by saponification of **1** in 92% yield catalysed by papain in 0.2 mol/L KH₂PO₄ buffer (pH 6.0) containing HSCH₂CH₂OH. In this condition only α -methyl aspartate was hydrolysed, while β -methyl aspartate remained. The resulted

^{*}E-mail: rosaguo2000@yahoo.com

Li Guo et al.

dipeptide **2** could bond H-Phe-NH₂ with thermolysin as a catalyst in $H_2O(pH 7.0)$ to give **3** in high yield(>82.6%).

Procedure: The enzyme was added to the reaction medium containing the acyl donor(1 mmol) and nucleophile(1.5~1.7 mmol). The reaction was monitored by HPLC. When the reaction was completed(for 1, 15 mg α-chymotrypsin the mixture was added, then was shaken 2 h at 25°C; for 2, 12 mg papain was added, then the mixture was shaken 2 h at 25°C; for 3, 3 mg thermolysin was added, then the mixture was kept 0.5 h at 40°C), the mixture was extracted with organic solvent. The organic phase was washed with 5% citric acid, 5% NaHCO₃ (except 2), saturated NaCl, subsequently, dried over Na₂SO₄. The solvent was evaporated to afford the crude product, which was purified by preparative reversed phase chromatography(MPLC) on Polygosil C18 60-200, eluted with 20~80% MeOH, containing 0.005mol/L NH₄OAc. After evaporation of MeOH, the residue was submitted to lyophilisation. The obtained peptides were verified by FD-MS or FAB-MS⁶.

HPLC analysis: Column: Nucleosil 100 RP-18, 5 μ m and 100x2 mm column (Macherey-Nagel). Mobile Phase: (System I): 0.05 mol/L NH₄OAc (pH 6.5), 80% of MeOH/0.05 mol/L NH₄OAc, elution gradient from 45% to 85%; (System II): H₂O (0.1% TFA), 80% acetonitrile (0.1% TFA), elution gradient from 30% to 70%; Flow rate 0.3 mL/min; UV detection at 260 nm.

Figure 1 Enzymatic Synthesis of CCK-8 Tripeptide Derivative

Phac-Met-OCam *a*-Chymotrypsin \downarrow + H-Asp(OMe)-OMe Phac-Met-Asp(OMe)₂ **1** Papain \downarrow Phac-Met-Asp(OMe)-OH **2** Thermolysin \downarrow + H-Phe-NH₂ Phac-Met-Asp(OMe)- Phe-NH₂ **3**

Meanwhile, we have also applied the immobilized enzymes (α -chymotrypsin/ Celite -545, papain/ VA-Epoxy, thermolysin/ Celite-545) in the synthesis of the tripeptide, to obtain 1(yield 72%) and 3(yield 86%, calculated from 1) without separation of the intermediate 2. The result showed that this procedure was even better than above reported ones. We will give the report elsewhere.

References and Notes

- 1. G. A. Sellek, J.B. Chaudhuri, Enzyme Microb. Technol., 1999, 25 (6), 471.
- 2. P. Liu, G. L. Tain, Y. H. Ye, Chem. J. Chin. Uni., 2001, 22 (8), 1342.
- 3. C. A. Bails, C. L. Mclaughlin, M. A. Della-Fera, Phys. Rev., 1986, 66, 172.
- 4. H. Waldmann and D. Sebastian, Chem. Rew., 1994, 94, 911.
- 5. Kullman W., Enzymatic peptide synthesis, CRC Press: BOCA RATON, FL, 1987.
- 6. All compounds were characterized by elemental analysis, FAB or FD-MS. Compound.1, mp. 128~129°C, FAB-MS: 411(M+1), $C_{19}H_{26}N_2O_6S(410)$; Compound.2, mp. 141~144°C, FD-MS: 396(M⁺), $C_{18}H_{24}N_2O_6S(396)$; Compound.3, mp. 210~213°C, FAB-MS: 543 (M+1), $C_{27}H_{34}N_4O_6S$ (542).

Received 20 May, 2002